Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
1.
Microbes Infect ; 26(3): 105283, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38141852

RESUMO

Leprosy is a chronic infectious disease caused by the intracellular bacillus Mycobacterium leprae (M. leprae), which is known to infect skin macrophages and Schwann cells. Although adipose tissue is a recognized site of Mycobacterium tuberculosis infection, its role in the histopathology of leprosy was, until now, unknown. We analyzed the M. leprae capacity to infect and persist inside adipocytes, characterizing the induction of a lipolytic phenotype in adipocytes, as well as the effect of these infected cells on macrophage recruitment. We evaluated 3T3-L1-derived adipocytes, inguinal adipose tissue of SWR/J mice, and subcutaneous adipose tissue biopsies of leprosy patients. M. leprae was able to infect 3T3-L1-derived adipocytes in vitro, presenting a strong lipolytic profile after infection, followed by significant cholesterol efflux. This lipolytic phenotype was replicated in vivo by M. leprae injection into mice inguinal adipose tissue. Furthermore, M. leprae was detected inside crown-like structures in the subcutaneous adipose tissue of multibacillary patients. These data indicate that subcutaneous adipose tissue could be an important site of infection, and probably persistence, for M. leprae, being involved in the modulation of the innate immune control in leprosy via the release of cholesterol, MCP-1, and adiponectin.


Assuntos
Hanseníase , Mycobacterium leprae , Camundongos , Animais , Humanos , Mycobacterium leprae/fisiologia , Lipólise , Adipócitos/patologia , Imunidade , Colesterol
2.
ACS Infect Dis ; 9(8): 1458-1469, 2023 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-37428112

RESUMO

Intra-household contacts (HCs) of leprosy patients are at increased risk of infection by Mycobacterium leprae and about ∼5-10% will develop active disease. A prognostic tool to identify HCs with the greatest risk of progressing to active disease would enhance early leprosy diagnosis and optimize prophylactic intervention. Previous metabolomics studies suggest that host lipid mediators derived from ω-3 and ω-6 polyunsaturated fatty acids (PUFAs) are potential biomarkers for leprosy. In this study, we investigated retrospective sera of leprosy HCs by liquid chromatography-mass spectrometry and enzyme-linked immunoassay to determine whether circulating levels of ω-3 and ω-6 PUFA metabolites were altered in HCs that developed leprosy (HCDL) in comparison to those that did not (HCNDL). Sera were collected from HCs at the time of index case diagnosis and before clinical signs/symptoms of leprosy. Our findings showed that HCDL sera exhibited a distinct metabolic profile in comparison to HCDNL. Specifically, arachidonic acid, leukotriene B4, 11-hydroxyeicosatetraenoic acid, prostaglandin D2, and lipoxin A4 were elevated in HCDL. In contrast, prostaglandin E2 levels were reduced in HCDL. The ω-3 PUFAs, docosahexaenoic acid, eicosapentaenoic acid, and the docosahexaenoic acid-derived resolvin D1 and maresin-1 were also elevated in HCDL individuals compared to HCNDL. Principal component analyses provided further evidence that lipid mediators could serve as an early biomarker for progression to active leprosy. A logistic model identified resolvin D1 and D2, and prostaglandin D2 as having the greatest potential for early detection of HCs that will manifest leprosy.


Assuntos
Ácidos Graxos Ômega-3 , Hanseníase , Humanos , Ácidos Docosa-Hexaenoicos , Mycobacterium leprae/metabolismo , Estudos Retrospectivos , Ácidos Graxos Insaturados/metabolismo , Hanseníase/diagnóstico , Prostaglandinas , Biomarcadores
3.
Front Microbiol ; 13: 918009, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35722339

RESUMO

The initial infection by the obligate intracellular bacillus Mycobacterium leprae evolves to leprosy in a small subset of the infected individuals. Transmission is believed to occur mainly by exposure to bacilli present in aerosols expelled by infected individuals with high bacillary load. Mycobacterium leprae-specific DNA has been detected in the blood of asymptomatic household contacts of leprosy patients years before active disease onset, suggesting that, following infection, the bacterium reaches the lymphatic drainage and the blood of at least some individuals. The lower temperature and availability of protected microenvironments may provide the initial conditions for the survival of the bacillus in the airways and skin. A subset of skin-resident macrophages and the Schwann cells of peripheral nerves, two M. leprae permissive cells, may protect M. leprae from effector cells in the initial phase of the infection. The interaction of M. leprae with these cells induces metabolic changes, including the formation of lipid droplets, that are associated with macrophage M2 phenotype and the production of mediators that facilitate the differentiation of specific T cells for M. leprae-expressed antigens to a memory regulatory phenotype. Here, we discuss the possible initials steps of M. leprae infection that may lead to active disease onset, mainly focusing on events prior to the manifestation of the established clinical forms of leprosy. We hypothesize that the progressive differentiation of T cells to the Tregs phenotype inhibits effector function against the bacillus, allowing an increase in the bacillary load and evolution of the infection to active disease. Epigenetic and metabolic mechanisms described in other chronic inflammatory diseases are evaluated for potential application to the understanding of leprosy pathogenesis. A potential role for post-exposure prophylaxis of leprosy in reducing M. leprae-induced anti-inflammatory mediators and, in consequence, Treg/T effector ratios is proposed.

4.
Front Med (Lausanne) ; 9: 899998, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35733868

RESUMO

In leprosy patients, acute inflammatory episodes, known as erythema nodosum leprosum (ENL), are responsible for high morbidity and tissue damage that occur during the course of Mycobacterium leprae infection. In a previous study, we showed evidence implicating DNA-sensing via TLR9 as an important inflammatory pathway in ENL. A likely important consequence of TLR9 pathway activation is the production of type I interferons (IFN-I) by plasmacytoid dendritic cells (pDCs), also implicated in the pathogenesis of several chronic inflammatory diseases. In this study, we investigated whether the IFN-I pathway is activated during ENL. Blood samples and skin lesions from multibacillary patients diagnosed with ENL were collected and the expression of genes of the IFN-I pathway and interferon-stimulated genes were compared with samples collected from non-reactional multibacillary (NR) patients. Whole blood RNAseq analysis suggested higher activation of the IFN-I pathway in ENL patients, confirmed by RT-qPCR. Likewise, significantly higher mRNA levels of IFN-I-related genes were detected in ENL skin biopsies when compared to NR patient lesions. During thalidomide administration, the drug of choice for ENL treatment, a decrease in the mRNA and protein levels of some of these genes both in the skin and blood was observed. Indeed, in vitro assays showed that thalidomide was able to block the secretion of IFN-I by peripheral blood mononuclear cells in response to M. leprae sonicate or CpG-A, a TLR9 ligand. Finally, the decreased frequencies of peripheral pDCs in ENL patients, along with the higher TLR9 expression in ENL pDCs and the enrichment of CD123+ cells in ENL skin lesions, suggest the involvement of these cells as IFN-I producers in this type of reaction. Taken together, our data point to the involvement of the pDC/type I IFN pathway in the pathogenesis of ENL, opening new avenues in identifying biomarkers for early diagnosis and new therapeutic targets for the better management of this reactional episode.

5.
Front Immunol ; 12: 727580, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34621273

RESUMO

Despite being treatable, leprosy still represents a major public health problem, and many mechanisms that drive leprosy immunopathogenesis still need to be elucidated. B cells play important roles in immune defense, being classified in different subgroups that present distinct roles in the immune response. Here, the profile of B cell subpopulations in peripheral blood of patients with paucibacillary (TT/BT), multibacillary (LL/BL) and erythema nodosum leprosum was analyzed. B cell subpopulations (memory, transition, plasmablasts, and mature B cells) and levels of IgG were analyzed by flow cytometry and ELISA, respectively. It was observed that Mycobacterium leprae infection can alter the proportions of B cell subpopulations (increase of mature and decrease of memory B cells) in patients affected by leprosy. This modulation is associated with an increase in total IgG and the patient's clinical condition. Circulating B cells may be acting in the modulation of the immune response in patients with various forms of leprosy, which may reflect the patient's ability to respond to M. leprae.


Assuntos
Linfócitos B/imunologia , Hanseníase Multibacilar/imunologia , Adulto , Feminino , Humanos , Imunoglobulina G/sangue , Memória Imunológica , Hanseníase Multibacilar/sangue , Masculino , Pessoa de Meia-Idade , Fenótipo
7.
Front Immunol ; 12: 657449, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34456901

RESUMO

The respiratory tract is considered the main port of entry of Mycobacterium leprae, the causative agent of leprosy. However, the great majority of individuals exposed to the leprosy bacillus will never manifest the disease due to their capacity to develop protective immunity. Besides acting as a physical barrier, airway epithelium cells are recognized as key players by initiating a local innate immune response that orchestrates subsequent adaptive immunity to control airborne infections. However, to date, studies exploring the interaction of M. leprae with the respiratory epithelium have been scarce. In this work, the capacity of M. leprae to immune activate human alveolar epithelial cells was investigated, demonstrating that M. leprae-infected A549 cells secrete significantly increased IL-8 that is dependent on NF-κB activation. M. leprae was also able to induce IL-8 production in human primary nasal epithelial cells. M. leprae-treated A549 cells also showed higher expression levels of human ß-defensin-2 (hßD-2), MCP-1, MHC-II and the co-stimulatory molecule CD80. Furthermore, the TLR-9 antagonist inhibited both the secretion of IL-8 and NF-κB activation in response to M. leprae, indicating that bacterial DNA sensing by this Toll-like receptor constitutes an important innate immune pathway activated by the pathogen. Finally, evidence is presented suggesting that extracellular DNA molecules anchored to Hlp, a histone-like protein present on the M. leprae surface, constitute major TLR-9 ligands triggering this pathway. The ability of M. leprae to immune activate respiratory epithelial cells herein demonstrated may represent a very early event during infection that could possibly be essential to the generation of a protective response.


Assuntos
Células Epiteliais Alveolares/imunologia , Células Epiteliais Alveolares/metabolismo , Imunidade Inata , Hanseníase/imunologia , Hanseníase/metabolismo , Mycobacterium leprae/imunologia , Receptor Toll-Like 9/metabolismo , Células A549 , Biomarcadores , Células Cultivadas , Histonas/metabolismo , Interações Hospedeiro-Patógeno/imunologia , Humanos , Imunomodulação , Hanseníase/microbiologia , NF-kappa B/metabolismo
8.
Front Cell Infect Microbiol ; 11: 709972, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34395315

RESUMO

Upon infection, Mycobacterium leprae, an obligate intracellular bacillus, induces accumulation of cholesterol-enriched lipid droplets (LDs) in Schwann cells (SCs). LDs are promptly recruited to M. leprae-containing phagosomes, and inhibition of this process decreases bacterial survival, suggesting that LD recruitment constitutes a mechanism by which host-derived lipids are delivered to intracellular M. leprae. We previously demonstrated that M. leprae has preserved only the capacity to oxidize cholesterol to cholestenone, the first step of the normal cholesterol catabolic pathway. In this study we investigated the biochemical relevance of cholesterol oxidation on bacterial pathogenesis in SCs. Firstly, we showed that M. leprae increases the uptake of LDL-cholesterol by infected SCs. Moreover, fluorescence microscopy analysis revealed a close association between M. leprae and the internalized LDL-cholesterol within the host cell. By using Mycobacterium smegmatis mutant strains complemented with M. leprae genes, we demonstrated that ml1942 coding for 3ß-hydroxysteroid dehydrogenase (3ß-HSD), but not ml0389 originally annotated as cholesterol oxidase (ChoD), was responsible for the cholesterol oxidation activity detected in M. leprae. The 3ß-HSD activity generates the electron donors NADH and NADPH that, respectively, fuel the M. leprae respiratory chain and provide reductive power for the biosynthesis of the dominant bacterial cell wall lipids phthiocerol dimycocerosate (PDIM) and phenolic glycolipid (PGL)-I. Inhibition of M. leprae 3ß-HSD activity with the 17ß-[N-(2,5-di-t-butylphenyl)carbamoyl]-6-azaandrost-4-en-3one (compound 1), decreased bacterial intracellular survival in SCs. In conclusion, our findings confirm the accumulation of cholesterol in infected SCs and its potential delivery to the intracellular bacterium. Furthermore, we provide strong evidence that cholesterol oxidation is an essential catabolic pathway for M. leprae pathogenicity and point to 3ß-HSD as a prime drug target that may be used in combination with current multidrug regimens to shorten leprosy treatment and ameliorate nerve damage.


Assuntos
Hanseníase , Mycobacterium leprae , Trifosfato de Adenosina , Colesterol , Humanos , Lipídeos
9.
Immunol Rev ; 301(1): 193-208, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33913182

RESUMO

Leprosy is a much-feared incapacitating infectious disease caused by Mycobacterium leprae or M lepromatosis, annually affecting roughly 200,000 people worldwide. During host-pathogen interaction, M leprae subverts the immune response, leading to development of disease. Throughout the last few decades, the impact of energy metabolism on the control of intracellular pathogens and leukocytic differentiation has become more evident. Mitochondria play a key role in regulating newly-discovered immune signaling pathways by controlling redox metabolism and the flow of energy besides activating inflammasome, xenophagy, and apoptosis. Likewise, this organelle, whose origin is probably an alphaproteobacterium, directly controls the intracellular pathogens attempting to invade its niche, a feature conquered at the expense of billions of years of coevolution. In the present review, we discuss the role of reduced host cell mitochondrial activity during M leprae infection and the consequential fates of M leprae and host innate immunity. Conceivably, inhibition of mitochondrial energy metabolism emerges as an overlooked and novel mechanism developed by M leprae to evade xenophagy and the host immune response.


Assuntos
Hanseníase , Mycobacterium leprae , Interações Hospedeiro-Patógeno , Humanos , Imunidade Inata , Mitocôndrias
10.
s.l; s.n; 2021. 1 - 15 p.
Não convencional em Inglês | CONASS, Sec. Est. Saúde SP, HANSEN, Hanseníase, SESSP-ILSLPROD, Sec. Est. Saúde SP, SESSP-ILSLACERVO, Sec. Est. Saúde SP | ID: biblio-1353414

RESUMO

The respiratory tract is considered the main port of entry of Mycobacterium leprae, the causative agent of leprosy. However, the great majority of individuals exposed to the leprosy bacillus will never manifest the disease due to their capacity to develop protective immunity. Besides acting as a physical barrier, airway epithelium cells are recognized as key players by initiating a local innate immune response that orchestrates subsequent adaptive immunity to control airborne infections. However, to date, studies exploring the interaction of M. leprae with the respiratory epithelium have been scarce. In this work, the capacity of M. leprae to immune activate human alveolar epithelial cells was investigated, demonstrating that M. leprae-infected A549 cells secrete significantly increased IL-8 that is dependent on NF-kB activation. M. leprae was also able to induce IL-8 production in human primary nasal epithelial cells. M. leprae-treated A549 cells also showed higher expression levels of human b-defensin-2 (hbD-2), MCP-1, MHC-II and the co-stimulatory molecule CD80. Furthermore, the TLR-9 antagonist inhibited both the secretion of IL-8 and NF-kB activation in response to M. leprae, indicating that bacterial DNA sensing by this Toll-like receptor constitutes an important innate immune pathway activated by the pathogen. Finally, evidence is presented suggesting that extracellular DNA molecules anchored to Hlp, a histone-like protein present on the M. leprae surface, constitute major TLR-9 ligands triggering this pathway. The ability of M. leprae to immune activate respiratory epithelial cells herein demonstrated may represent a very early event during infection that could possibly be essential to the generation of a protective response.(AU)


Assuntos
Humanos , Células Epiteliais Alveolares/imunologia , Células Epiteliais Alveolares/metabolismo , Hanseníase/imunologia , Hanseníase/metabolismo , Mycobacterium leprae/imunologia , Receptores Toll-Like/metabolismo , Imunidade Inata
11.
s.l; s.n; 2021. 14 p. tab, graf.
Não convencional em Inglês | Sec. Est. Saúde SP, HANSEN, CONASS, Hanseníase, SESSP-ILSLPROD, Sec. Est. Saúde SP, SESSP-ILSLACERVO, Sec. Est. Saúde SP | ID: biblio-1293071

RESUMO

Upon infection, Mycobacterium leprae, an obligate intracellular bacillus, induces accumulation of cholesterol-enriched lipid droplets (LDs) in Schwann cells (SCs). LDs are promptly recruited to M. leprae-containing phagosomes, and inhibition of this process decreases bacterial survival, suggesting that LD recruitment constitutes a mechanism by which host-derived lipids are delivered to intracellular M. leprae. We previously demonstrated that M. leprae has preserved only the capacity to oxidize cholesterol to cholestenone, the first step of the normal cholesterol catabolic pathway. In this study we investigated the biochemical relevance of cholesterol oxidation on bacterial pathogenesis in SCs. Firstly, we showed that M. leprae increases the uptake of LDL-cholesterol by infected SCs. Moreover, fluorescence microscopy analysis revealed a close association between M. leprae and the internalized LDL-cholesterol within the host cell. By using Mycobacterium smegmatis mutant strains complemented with M. leprae genes, we demonstrated that ml1942 coding for 3ß-hydroxysteroid dehydrogenase (3ß-HSD), but not ml0389 originally annotated as cholesterol oxidase (ChoD), was responsible for the cholesterol oxidation activity detected in M. leprae. The 3ß-HSD activity generates the electron donors NADH and NADPH that, respectively, fuel the M. leprae respiratory chain and provide reductive power for the biosynthesis of the dominant bacterial cell wall lipids phthiocerol dimycocerosate (PDIM) and phenolic glycolipid (PGL)-I. Inhibition of M. leprae 3ß-HSD activity with the 17ß-[N-(2,5-di-t-butylphenyl)carbamoyl]-6-azaandrost-4-en-3one (compound 1), decreased bacterial intracellular survival in SCs. In conclusion, our findings confirm the accumulation of cholesterol in infected SCs and its potential delivery to the intracellular bacterium. Furthermore, we provide strong evidence that cholesterol oxidation is an essential catabolic pathway for M. leprae pathogenicity and point to 3ß-HSD as a prime drug target that may be used in combination with current multidrug regimens to shorten leprosy treatment and ameliorate nerve damage.


Assuntos
Humanos , Hanseníase , Mycobacterium leprae , Trifosfato de Adenosina , Colesterol , Lipídeos
12.
Mem Inst Oswaldo Cruz ; 115: e200075, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32696914

RESUMO

BACKGROUND: Although Mycobacterium leprae (ML) is well characterised as the causative agent of leprosy, the pathophysiological mechanisms underlying peripheral nerve damage still need further understanding. In vitro and in vivo studies have yielded insights into molecular mechanisms of ML interaction with Schwann cells (SC), indicating the regulation of genes and proteins crucial to neural plasticity. OBJECTIVES: We aimed to investigate the effect of ML on neurotrophins expression in human SC (hSC) and mice sciatic nerves to better understand their role in leprosy neuropathy, and aiming to contribute to future therapeutic approaches. METHODS: We evaluated mRNA and protein expression of BDNF, NGF, NT-3, NT-4 in hSC from amputation nerve fragments, as well as in athymic nude mice, infected by ML for eight months. FINDINGS AND MAIN CONCLUSIONS: Our in vitro results showed a trend to decline in NGF and BDNF mRNA in ML-treated hSC, compared to controls. The immunodetection of BDNF and NT-4 was significantly downregulated in ML-treated hSC. Conversely, ML-infected mice demonstrated upregulation of NT-3, compared to non-infected animals. Our findings indicate that ML may be involved in neurotrophins regulation, suggesting that a pathogen-related imbalance of these growth factors may have a role in the neural impairment of leprosy.


Assuntos
Mycobacterium leprae , Fatores de Crescimento Neural/metabolismo , Células de Schwann/metabolismo , Nervo Isquiático/metabolismo , Animais , Humanos , Camundongos , Camundongos Nus
13.
PLoS Negl Trop Dis ; 14(3): e0008138, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32226013

RESUMO

The changes in host lipid metabolism during leprosy have been correlated to fatty acid alterations in serum and with high-density lipoprotein (HDL) dysfunctionality. This is most evident in multibacillary leprosy patients (Mb), who present an accumulation of host lipids in Schwann cells and macrophages. This accumulation in host peripheral tissues should be withdrawn by HDL, but it is unclear why this lipoprotein from Mb patients loses this function. To investigate HDL metabolism changes during the course of leprosy, HDL composition and functionality of Mb, Pb patients (paucibacillary) pre- or post-multidrug therapy (MDT) and HC (healthy controls) were analyzed. Mb pre-MDT patients presented lower levels of HDL-cholesterol compared to HC. Moreover, Ultra Performance Liquid Chromatography-Mass Spectrometry lipidomics of HDL showed an altered lipid profile of Mb pre-MDT compared to HC and Pb patients. In functional tests, HDL from Mb pre-MDT patients showed impaired anti-inflammatory and anti-oxidative stress activities and a lower cholesterol acceptor capacity compared to other groups. Mb pre-MDT showed lower concentrations of ApoA-I (apolipoprotein A-I), the major HDL protein, when compared to HC, with a post-MDT recovery. Changes in ApoA-I expression could also be observed in M. leprae-infected hepatic cells. The presence of bacilli in the liver of a Mb patient, along with cell damage, indicated hepatic involvement during leprosy, which may reflect on ApoA-I expression. Together, altered compositional and functional profiles observed on HDL of Mb patients can explain metabolic and physiological changes observed in Mb leprosy, contributing to a better understanding of its pathogenesis.


Assuntos
Hanseníase/patologia , Lipoproteínas HDL/sangue , Adolescente , Adulto , Idoso , Cromatografia Líquida de Alta Pressão , Feminino , Humanos , Hansenostáticos/uso terapêutico , Hanseníase/tratamento farmacológico , Masculino , Espectrometria de Massas , Pessoa de Meia-Idade , Plasma/química , Adulto Jovem
14.
F1000Res ; 92020.
Artigo em Inglês | MEDLINE | ID: mdl-32051758

RESUMO

Chronic infection by the obligate intracellular pathogen Mycobacterium leprae may lead to the development of leprosy. Of note, in the lepromatous clinical form of the disease, failure of the immune system to constrain infection allows the pathogen to reproduce to very high numbers with minimal clinical signs, favoring transmission. The bacillus can modulate cellular metabolism to support its survival, and these changes directly influence immune responses, leading to host tolerance, permanent disease, and dissemination. Among the metabolic changes, upregulation of cholesterol, phospholipids, and fatty acid biosynthesis is particularly important, as it leads to lipid accumulation in the host cells (macrophages and Schwann cells) in the form of lipid droplets, which are sites of polyunsaturated fatty acid-derived lipid mediator biosynthesis that modulate the inflammatory and immune responses. In Schwann cells, energy metabolism is also subverted to support a lipogenic environment. Furthermore, effects on tryptophan and iron metabolisms favor pathogen survival with moderate tissue damage. This review discusses the implications of metabolic changes on the course of M. leprae infection and host immune response and emphasizes the induction of regulatory T cells, which may play a pivotal role in immune modulation in leprosy.


Assuntos
Hanseníase , Colesterol , Progressão da Doença , Humanos , Mycobacterium leprae , Células de Schwann
15.
Cell Microbiol ; 22(1): e13128, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31652371

RESUMO

Leprosy neuropathy is a chronic degenerative infectious disorder of the peripheral nerve caused by the intracellular obligate pathogen Mycobacterium leprae (M. leprae). Among all nonneuronal cells that constitute the nerve, Schwann cells are remarkable in supporting M. leprae persistence intracellularly. Notably, the success of leprosy infection has been attributed to its ability in inducing the demyelination phenotype after contacting myelinated fibres. However, the exact role M. leprae plays during the ongoing process of myelin breakdown is entirely unknown. Here, we provided evidence showing an unexpected predilection of leprosy pathogen for degenerating myelin ovoids inside Schwann cells. In addition, M. leprae infection accelerated the rate of myelin breakdown and clearance leading to increased formation of lipid droplets, by modulating a set of regulatory genes involved in myelin maintenance, autophagy, and lipid storage. Remarkably, the blockage of myelin breakdown significantly reduced M. leprae content, demonstrating a new unpredictable role of myelin dismantling favouring M. leprae physiology. Collectively, our study provides novel evidence that may explain the demyelination phenotype as an evolutionarily conserved mechanism used by leprosy pathogen to persist longer in the peripheral nerve.


Assuntos
Mycobacterium leprae/fisiologia , Bainha de Mielina/metabolismo , Células de Schwann/microbiologia , Animais , Células Cultivadas , Humanos , Hanseníase/complicações , Hanseníase/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Mycobacterium leprae/patogenicidade , Bainha de Mielina/microbiologia
16.
Comp Immunol Microbiol Infect Dis ; 68: 101397, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31775113

RESUMO

Leprosy was recognized as a zoonotic disease, associated with nine-banded armadillos (Dasypus novemcinctus) in the Southern United States of America in 2011. In addition, there is growing evidence to support a role for armadillos in zoonotic leprosy in South America. The current study evaluated twenty specimens of the six-banded armadillo (Euphractus sexcinctus), collected from rural locations in the state of Rio Grande do Norte (RN), Brazil for evidence of infection with Mycobacterium leprae. Serum was examined using two "in-house" enzyme-linked immunosorbent assays (ELISAs) and via two commercially available (ML flow and NDO-LID®) immunochromatographic lateral flow (LF) tests, for detection of the PGL-I and/or LID-1 antigens of the bacterium. The presence of M. leprae DNA in liver tissue was examined using the multi-copy, M. leprae-specific repetitive element (RLEP), as target in conventional and nested PCR assays. Molecular and anti-PGL-I-ELISA data indicated that 20/20 (100 %) of the armadillos were infected with M. leprae. The corresponding detection levels recorded with the LF tests were 17/20 (85 %) and 16/20 (85 %), for the NDO-LID® and ML flow tests, respectively. Our results indicate that, in common with D. novemcinctus, six banded armadillos (a species hunted and reared as a food-source in some regions of Brazil, including RN), represent a potential reservoir of M. leprae and as such, their role in a possible zoonotic cycle of leprosy within Brazil warrants further investigation.


Assuntos
Tatus/microbiologia , Reservatórios de Doenças/veterinária , Hanseníase/veterinária , Mycobacterium leprae/genética , Mycobacterium leprae/imunologia , Animais , Brasil/epidemiologia , Reservatórios de Doenças/microbiologia , Ensaio de Imunoadsorção Enzimática , Feminino , Hanseníase/epidemiologia , Masculino , Reação em Cadeia da Polimerase , Zoonoses/epidemiologia , Zoonoses/microbiologia
17.
Immunobiology ; 225(1): 151866, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31757558

RESUMO

Serological tests for subclinical Mycobacterium leprae infection based on antibodies to phenolic glycolipid-1 (PGL-1) and leprosy IDRI diagnostic-1 (LID-1) have not been compared in HIV-infected and uninfected individuals. PGL-1 seropositivity by ELISA was 6.0 % (21/350) in HIV-infected compared with 29.1 % (102/350) in HIV-uninfected individuals (p < 0.001); LID-1 seropositivity was 45.4 % (159/350) in HIV-infected compared with 50.3 % (153/304) in HIV-uninfected individuals (p = 0.21). In HIV-infected individuals, LID-1 but not PGL-1 antibody levels were inversely associated with CD4+ cell count (p = 0.02). These differential associations of HIV infection and CD4 count with PGL-1 and LID-1 have implications for M leprae immunodiagnostic tools and require replication.


Assuntos
Anticorpos Antibacterianos/sangue , Linfócitos T CD4-Positivos/imunologia , Infecções por HIV/imunologia , HIV-1/fisiologia , Hanseníase/imunologia , Mycobacterium leprae/fisiologia , Adulto , Formação de Anticorpos , Antígenos de Bactérias/imunologia , Brasil/epidemiologia , Contagem de Células , Doenças Endêmicas , Feminino , Glicolipídeos/imunologia , Infecções por HIV/diagnóstico , Infecções por HIV/epidemiologia , Humanos , Testes Imunológicos , Hanseníase/diagnóstico , Hanseníase/epidemiologia , Proteínas Associadas a Gotículas Lipídicas/imunologia , Masculino , Adulto Jovem
18.
Rio de Janeiro; s.n; 2020. 11 p. ilus.
Não convencional em Inglês | HANSEN, Sec. Est. Saúde SP, CONASS, Hanseníase, SESSP-ILSLPROD, Sec. Est. Saúde SP, SESSP-ILSLACERVO, Sec. Est. Saúde SP | ID: biblio-1146417

RESUMO

BACKGROUND: Although Mycobacterium leprae (ML) is well characterised as the causative agent of leprosy, the pathophysiological mechanisms underlying peripheral nerve damage still need further understanding. In vitro and in vivo studies have yielded insights into molecular mechanisms of ML interaction with Schwann cells (SC), indicating the regulation of genes and proteins crucial to neural plasticity. OBJECTIVES: We aimed to investigate the effect of ML on neurotrophins expression in human SC (hSC) and mice sciatic nerves to better understand their role in leprosy neuropathy, and aiming to contribute to future therapeutic approaches. METHODS: We evaluated mRNA and protein expression of BDNF, NGF, NT-3, NT-4 in hSC from amputation nerve fragments, as well as in athymic nude mice, infected by ML for eight months. FINDINGS and MAIN CONCLUSIONS: Our in vitro results showed a trend to decline in NGF and BDNF mRNA in ML-treated hSC, compared to controls. The immunodetection of BDNF and NT-4 was significantly downregulated in ML-treated hSC. Conversely, ML-infected mice demonstrated upregulation of NT-3, compared to non-infected animals. Our findings indicate that ML may be involved in neurotrophins regulation, suggesting that a pathogen-related imbalance of these growth factors may have a role in the neural impairment of leprosy(AU).


Assuntos
Humanos , Animais , Camundongos , Células de Schwann/imunologia , Mycobacterium leprae/imunologia , Doenças do Sistema Nervoso Periférico , Hanseníase/complicações , Fatores de Crescimento Neural
19.
s.l; s.n; 2020. 8 p. graf.
Não convencional em Inglês | HANSEN, Sec. Est. Saúde SP, Hanseníase | ID: biblio-1102410

RESUMO

Leprosy neuropathy is a chronic degenerative infectious disorder of the peripheral nerve caused by the intracellular obligate pathogen Mycobacterium leprae (M. leprae). Among all nonneuronal cells that constitute the nerve, Schwann cells are remarkable in supporting M. leprae persistence intracellularly. Notably, the success of leprosy infection has been attributed to its ability in inducing the demyelination phenotype after contacting myelinated fibres. However, the exact role M. leprae plays during the ongoing process of myelin breakdown is entirely unknown. Here, we provided evidence showing an unexpected predilection of leprosy pathogen for degenerating myelin ovoids inside Schwann cells. In addition, M. leprae infection accelerated the rate of myelin breakdown and clearance leading to increased formation of lipid droplets, by modulating a set of regulatory genes involved in myelin maintenance, autophagy, and lipid storage. Remarkably, the blockage of myelin breakdown significantly reduced M. leprae content, demonstrating a new unpredictable role of myelin dismantling favouring M. leprae physiology. Collectively, our study provides novel evidence that may explain the demyelination phenotype as an evolutionarily conserved mechanism used by leprosy pathogen to persist longer in the peripheral nerve.


Assuntos
Células de Schwann/microbiologia , Doenças do Sistema Nervoso Periférico/metabolismo , Mycobacterium leprae/patogenicidade , Bainha de Mielina/microbiologia , Doenças Desmielinizantes/microbiologia , Hanseníase/complicações
20.
s.l; s.n; 2020. 23 p. ilus, tab, graf.
Não convencional em Inglês | Sec. Est. Saúde SP, HANSEN, Hanseníase, SESSP-ILSLACERVO, Sec. Est. Saúde SP | ID: biblio-1102413

RESUMO

The changes in host lipid metabolism during leprosy have been correlated to fatty acid alterations in serum and with high-density lipoprotein (HDL) dysfunctionality. This is most evident in multibacillary leprosy patients (Mb), who present an accumulation of host lipids in Schwann cells and macrophages. This accumulation in host peripheral tissues should be withdrawn by HDL, but it is unclear why this lipoprotein from Mb patients loses this function. To investigate HDL metabolism changes during the course of leprosy, HDL composition and functionality of Mb, Pb patients (paucibacillary) pre- or post-multidrug therapy (MDT) and HC (healthy controls) were analyzed. Mb pre-MDT patients presented lower levels of HDL-cholesterol compared to HC. Moreover, Ultra Performance Liquid Chromatography-Mass Spectrometry lipidomics of HDL showed an altered lipid profile of Mb pre-MDT compared to HC and Pb patients. In functional tests, HDL from Mb pre-MDT patients showed impaired anti-inflammatory and anti-oxidative stress activities and a lower cholesterol acceptor capacity compared to other groups. Mb pre-MDT showed lower concentrations of ApoA-I (apolipoprotein A-I), the major HDL protein, when compared to HC, with a post-MDT recovery. Changes in ApoA-I expression could also be observed in M. leprae-infected hepatic cells. The presence of bacilli in the liver of a Mb patient, along with cell damage, indicated hepatic involvement during leprosy, which may reflect on ApoA-I expression. Together, altered compositional and functional profiles observed on HDL of Mb patients can explain metabolic and physiological changes observed in Mb leprosy, contributing to a better understanding of its pathogenesis. AUTHOR SUMMARY: Leprosy is a chronic disease caused by Mycobacterium leprae, which causes lesions on the skin and peripheral nerves. Some patients do not present an efficient immune response and have a disseminated infection (multibacillary, Mb). Mb patients have lipid accumulation in infected tissues that is important for microorganism survival. High-density lipoprotein (HDL) is composed of proteins and lipids and is produced in the liver. It removes excess of lipids from peripheral tissues and presents anti-inflammatory activity; however, these activities are not being properly performed in leprosy. To understand more about HDL metabolism on leprosy, the chemical composition and functionality of HDL from leprosy patients were analyzed before and after treatment with antibiotics (multidrug therapy, MDT). It was observed that HDL has an altered lipid composition in Mb patients before MDT, which may lead to an impairment of its functions. Apolipoprotein A-I (ApoA-I), the main HDL protein, seems to be highly affected during infection. These functions can be slightly recovered after MDT, but not in the levels of healthy individuals. Our data open new perspectives to elucidate the modulation of lipid metabolism in leprosy and consequently to prevent disease complications.


Assuntos
Hanseníase/complicações , Hanseníase/metabolismo , Lipoproteínas HDL/metabolismo , Mycobacterium leprae/patogenicidade , Hepatopatias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...